THE ENTRAPMENT FACTOR PERTAINING TO
MEDIUM-SIZE VOLATILE PARTICLES IN SLOT CHANNELS
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The theory of precipitation is applied to medium-size particles under the influence of thermo-
and diffusophoretic forces in gas streams through slot channels. A formula for the aerosol
entrapment factor is then derived.

When a binary gaseous mixture (consisting, for example, of water vapor and air) is passed through
a slot channel [1], with nonuniform temperature and concentration distributions, then medium-size volatile
particles forming around dry condensate nuclei in a stream supersaturated with vapor will precipitate on
the channel walls under the influence of diffuso~ and thermophoretic forces {1, 4].

The velocity of particles suspended in a gas (shown in x,y coordinates in Fig. 1 with symmetry with
respect to the z-axis)
v=V+v, +v, (1)

with V denoting the stream velocity, vp denoting the diffusophoretic velocity {2], and vy denoting the
thermophoretic velocity of volatile particles, was determined first by Yu. I. Yalamov and E. R. Shchukin
[3] and later more accurately by Yu. I. Yalamov, B. V. Deryagin, and V. S. Galoyan [4] (the Yalamov
—Deryagin—Galoyan formula will be used here).

By solving the equation

— == @)

one can determine the extreme trajectory of a particle, i.e.. the trajectory which passes through the
channel exit (x = d/2, z = I ;) and which bounds the region adjacent to the channel wall where all particles
of a given kind precipitate.

The entrapment factor, defined as the ratio of the number of particles precipitating on the wall per
unit time to the number of particles entering the channel during that time (we assume that aerosol particles
are uniformly distributed in a gas at the channel entrance), is
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with x¢7 denoting the coordinate of the extreme trajectory at z = 0,

In practice one may use the model of a slot condenser where the temperature and the concentration
of the vapor of the volatile substance (for example, of water vapor in air) n; are given at the enfrance and
at the walls of the channel [1], under the condition that ny < nj:

Tx=02z=0 =Ty n(x=02=0)=ny,: _ (4)
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T(x“iT’z):Tw; ’“(x:i“é”z):”‘w (5)

The distributions of mass velocity, concentration, and temperature in such a channel are
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and a? denoting the thermal diffusivity.

For the velocity of particles we have
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In expression (11) ny = n—ny, n=p/kT, Cpy, Ky, Kpgyare the coefficients of diffusive, isothermal, and
thermal sliding, A is the mean-free-path length, e and nj are the thermal conductivity of the gas and of
a droplet respectively, L is the specific heat of evaporation, v is the kinematic viscosity é = dnyg(T)/dT
with nyg(T) denoting the density of saturated vapor of the volatile component in the mixture at temperature
T, C¢ and Kg are the coefficients associated respectively with the temperature jump and the concentration
jump of the volatile component at the droplet surface, T and n are respectively the temperature and the
density of the gas at a given point, and k is the Boltzmann constant. Equation (2) has no analytical solution
when

L Any|_ Y‘Z’” = 0.6, %ﬂ > 0.6, (12)

w w
where

Aty =ny(xgy 2=0) — iy, AT =T (xy, 2=0)—T,.

In that case we find the extreme trajectory by subdividing the channel into several segments along the
z-axis so that the coefficients associated with grad n; and grad T in (11) may be assumed constant within
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Fig. 2. Theoretical and test values of the entrapment factor é (%) as a function
of the temperature difference AT = Tjp—Ty (°C), for Ty = 285°K and A/R = 0. 1.

Fig. 3. Theoretical curves of the entrapment factor as a function of (A) the
channel width 6 = f(d) and (B) the channel length ¢ = £f): d(cm), Iglem), & %),
A/R = 0.1,

each segment, and by successively determining the particle trajectories within each segment from the
channel exit (x = + d/2, z =1;) to the channel entrance (the end of the trajectory in segment r + 1 being
also the beginning of the trajectory in segment r).

If condition (12) is satisfied, then substituting n, = nyy + Any/2 and T = Ty, + AT/2 in (11) will yield
an analytic solution for the entrapment factor, without the need to subdivide the channel into segments:

a) when the effect of thermophoretic forces is negligible, i.e. when vp > Vr; solution (2) with the
initial condition (xg = d/2, zy = l¢) and xg = d(1—06)/2 will then yield the following analytic expression for
the entrapment factor:
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b) when the effect of volatility is negligible, i.e., when He K (®j + (2Lmy 6D /(1 + 2KgA/R)) and the
second term on the right-hand side of (11) may be omitted; we then have

82
— In (1—8)—0.425 (1—8)2— 0.09 (1—8)* — 0,017 (1—8)s -+ XP {085 (1—=8/%

1.7
1+6Cm——}\'— 34 \? D)
Ny iy 1+2C, — d Vo
R
A
2K7vCy — ,
—{-ATT. T ,R T [l_exp{—(gffa—z@ﬂ—kO.S& (14)

T a2(1+26m—R—-) (1+26t ?) VO

Formulas (13) and (14) have been derived for a laminar flow of gases with approximately defined
boundary conditions (the gas temperature and the density of the vapor of the volatile component in the
mixture are stipulated not across the entire entrance section but only at the initial point x = 0, z = 0) with-
out considering the possibility of gas turbulization or that large particles may precipitate under their own
weight.

Although relations (13) and (14) have been derived for a laminar flow, a comparison with the test data
obtained by A. N. Terebenin [5] indicates their applicability within the range Re = 500, inasmuch as the
theoretical values for the entrapment factor are on the low side and differ, within this range of the Reynolds
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number, by 5-30% from the test values (Fig. 2).

There are no other data available in the scientific literature besides the test data pertaining to the
aerosol entrapment factor as a function of the temperature difference (AT = Tijn—Tyw), obtained by A. N.
Terebenin and A. P. Bykov [5-7] with a semiindustrial condenser-diffusion filter passing a binary air and
water vapor mixture.

Measured and calculated values of the entrapment factor 6, as a function of the temperature difference
(AT = Tjp—Ty,), are compared in Fig. 2 (d= 0.6 cm, I =92 cm, V,= 120 em/sec) with nyjn and Ny equal
to the densities of saturated water vapor at temperatures Tjy and Ty respectively. According to the graph,
the theoretical values of the entrapment factor differ from its test values within 30%.

Owing to the lack of test data, in Fig. 3 A, B are shown only theoretical curves of the entrapment
factor 6 as a function of the channel width d(Z, = 92 cm; Vy = 120 cm/sec; Ty = 285°K; AT=38 (@); AT
= 63° (b); AT = 80° (c)) and as a function of the channel length lg (d= 0.6 cm) at V= 120 cm/sec, Ty
= 285°K, and AT =38 (@); AT= 63" (b); AT=80° (c)) in each case, withnj, and n;y equal fo the densities
of saturated water vapor at temperatures Tj, and Ty, respectively. According to Fig. 3, a narrowing of
the channel or a lengthening of the plates will cause the entrapment factor first to increase fastup to a
certain limit-and then to remain almost constant, which is important to consider in the design of slot con-

densers.
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